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Abstract1
In this paper, we explore the problem of scheduling
parallel programs using task duplication for message-
passing multicomputers. Task duplication means
scheduling a parallel program by redundantly executing
some of the tasks on which other tasks of the program
critically depend. This can reduce the start times of tasks
waiting for messages from tasks residing in other
processors. There have been a few scheduling algorithms
using task duplication. We discuss two such previously
reported algorithms and describe their differences,
limitations and suitability for different environments. A
new algorithm is proposed which outperforms both of
these algorithms, and is more efficient for low as well as
high values of communication-to-computation ratios. The
algorithm takes into account arbitrary computation and
communication costs. All three algorithms are tested by
scheduling some of the commonly encountered graph
structures.
1  Introduction

Despite great architectural advances, the
communication overhead in message-passing parallel
computers in general and in networked distributed systems
in particular remains an inevitable penalty. Due to this
penalty, the speedup of a parallel program may be limited
or may not scale very well with the size of the system. The
interprocessor communication overhead occurs when two
tasks of a parallel program assigned to different processors
have dependencies and they need to exchange data among
them [9]. Task duplication is one way of reducing the
interprocessor communication overhead which in turn can
improve the total execution time [6]. Task duplication
means scheduling a parallel program by redundantly
allocating some of its tasks on which other tasks critically
depend. This reduces the start times of waiting tasks which
can eventually improve the overall execution time of the
whole program. Duplication based scheduling can be
particularly useful for systems with high communication
overhead such as a network of workstations.

To effectively run a parallel program on an
architecture, the program needs to be scheduled in an
efficient fashion. The scheduling problem can be
described as an allocation of a set of tasks onto a set of
processors, such that the total schedule length in terms of
time is minimized. It is a well-known fact that the
scheduling problem in its many variants is NP-complete
[2] and most of the solutions are based on heuristics [4],
[9], [10]. The complexity of the algorithm and the quality
of the solution largely depend on the task graph structure
and the target machine model. The algorithm’s complexity
should be within practical limits and it should be scalable
in that it should still generate a good solution if the size of

the problem and system is increased. Even with an
efficient scheduling algorithm, it may happen that some
processors are idle during different time periods because
the tasks assigned to them are waiting to receive some data
from the tasks assigned to some other processors. If these
idle time slots can be utilized effectively by identifying the
critical tasks and redundantly allocating them in these
slots, the execution time of the parallel program can be
further reduced. However, using duplication makes the
scheduling problem more difficult. The scheduling
algorithm not only needs to observe the precedence
constraints among tasks but also needs to recognize which
tasks to duplicate and how to fit them in the idle time slots.

This paper is organized as follows. In Section 2, we
first describe the problem statement and present some
definitions used in our study. We also discuss two
previously proposed scheduling algorithms in the same
section. In Section 3, we first outline the basic principles
used in the design of our algorithm. We also describe our
proposed algorithm. Section 4 contains the experimental
results and performance comparisons. The last section
concludes this paper.
2  Problem Statement and Related Algorithms

In this section, we describe the problem statement
through an introduction of a number of terminology
commonly used for the scheduling problem. We also
present some discussion on using duplication in the
scheduling problem. Two previously reported scheduling
algorithms using duplication, as well as their
characteristics, are discussed at the end of this section.

A parallel program can be represented by a directed
acyclic graph in which each node, denoted byni, represents
a task. The amount of computation required in a task is
called thecomputation costand is denoted byw(ni). The
edges in the parallel program graph correspond to the
communication messages and precedence constraints
among the tasks. A number is associated with each edge to
denote the amount of communication data from a task to
another. This number is called thecommunication costand
is denoted bycij. Here, the subscriptij indicates that the
directed edge emerges from the source nodeni and
incidents on the destination nodenj. The source node and
the destination node of an edge is called theparentnode
and thechild node, respectively. A node which does not
have parent node is called anentry node whereas a node
which does not have child node is called anexit node.
Clearly, the values ofw(ni) andcij depend not only on the
parallel program but also on the parameters of the
underlying system. For example, even a small amount of
communication data when routed over a very slow
network can result in a very high value ofcij. The
communication-to-computation-ratio (CCR)of a parallel
program is defined as its average communication cost
divided by its average computation cost on a given system.
The communication cost among two nodes assigned to the
same processor is assumed to be zero. Ifni is scheduled to
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processorJ, ST(ni, J)andFT(ni, J)denote the start time and
finish time ofni on processorJ, respectively. It should be
noted thatFT(ni, J)= ST(ni, J) + w(ni). After all nodes have
been scheduled, the schedule length is defined as

 across all processors.
2.1  Fundamentals

A node cannot start execution before it gathers all of
the messages from its parent nodes. Thus, it is not possible
to determine the start time of a node before determining the
start times of its parent nodes. This implies that anode
cannot be scheduled until all of its parent nodes have been
scheduled.When all the parent nodes of a node have been
scheduled, there is a constraint on its start time which is
due to the communication edges from its parent nodes.
This is explained by the following definition.
Definition 1: The communication-constrained earliest
start time, denoted by CEST(ni, J), of a node ni on a
processor J is defined as

where ni has p parent nodes and is the k-th parent
node. The parent node that maximizes the above
expression is called the Very-Important-Parent of ni and is
denoted by VIP(ni, J).

Given the communication-constrained earliest start
time of a node on a processor, the following axiom governs
the decision of whether the node can be scheduled on that
processor.
Axiom I: A node ni can be scheduled to a processor J on
which the set of nodes has been scheduled
iff there exists some k such that

where ; ; and

Intuitively, the axiom implies that a node cannot be
schedule to a processor unless that processor has an idle
time slot large enough to accommodate the node. In case
the node can be scheduled, Axiom II given below
determines its actual start time.
Axiom II: The earliest start time of ni on processor J,
denoted by EST(ni, J), is
where l is the minimum value of k satisfying the inequality
in Axiom I. If there does not exist such l, EST(ni, J) is
defined as .

It should be noted that bothCEST(ni, J) andEST(ni, J)
are varying quantities; their values depend on the current
state of scheduling.
2.2  Related Algorithms

Using duplication in static task scheduling is a
relatively unexplored research topic. Kruatrachue and
Lewis [5] have proposed one such scheduling algorithm,
calledDuplication Scheduling Heuristic (DSH). Another
algorithm, called Bottom-up-Top-down Duplication
Heuristic (BTDH), has been recently proposed by Chung
and Ranka [1].

In our opinion, the DSH algorithm has the following
deficiency. As it considers only the idle time slot between
the finish time of the last node scheduled to a processor
and the earliest start time of the candidate node (the one
being considered for scheduling), the degree of duplication
is likely to be small. Thus, duplication may not always be
effective.

The BTDH algorithm is essentially an extension of the
DSH algorithm. The complexity of both algorithms is
O(n4). There are basically two differences between them.

i) The BTDH algorithm does not indicate any
preference as to which parent node to be considered
for duplication.

ii) The duplication process does not stop as long as the
idle time slot has not been overflown. That is, the
process does not stop even if the start time of the
candidate node is increased.

Despite its better performance, the BTDH algorithm
has the following drawback. The algorithm may duplicate
some parent nodes which will not reduce the start time of
a node. Thus, at later steps, when the algorithm considers
the most important parent node — the one from which the
data sent arrives last, there may be no space in the idle time
slot to accommodate it.
3  The Proposed Algorithm

In this section, we describe our proposed scheduling
algorithm. We make two assumptions in our study. First,
we assume that the processor network is fully-connected
with unlimited number of identical processors. Second,
each processor has dedicated hardware to deal with
communication so that communication can take place
simultaneously with computation. Before describing the
algorithm, we discuss some of the basic principles used in
its design.
3.1  Design Principles

At each scheduling step, some nodes are more
important so they should be given higher priorities which
in turn means that they should be scheduled first.
Determining node priorities requires an attribute, which is
given by the following definition.
Definition 2: A Critical Path (CP) of a task graph, is a set
of nodes and edges, forming a path from an entry node to
an exit node, of which the sum of computation cost and
communication cost is the maximum.

Proper scheduling of nodes on the CP can potentially
generate efficient schedules. However, we need to
schedule the parent nodes of CPNs efficiently also. The
following definition explains a partitioning of nodes which
can be used to assign accurate priorities to nodes.
Definition 3: An In-Branch Node (IBN) is a node, which
is not a CPN, and from which there is a path reaching a
Critical Path Node (CPN). An Out-Branch Node (OBN) is
a node, which is neither a CPN nor an IBN.

Clearly, in order not to violate the precedence
constraints among nodes, all IBNs of each CPN have to be
scheduled before the CPN is considered for scheduling.
The OBNs need to be scheduled in an efficent manner also.
The following definition gives a way to efficiently
schedule the OBNs.
Definition 4: The OBN Binding is an ordering of OBNs
such that an OBN ni has a higher priority than another
OBN nj if ni’s depth is larger than nj’s, under the
constraint that the parent node of an OBN ni, which is
also an OBN, always has higher priority than ni.

The duplication technique used in our proposed
algorithm is different from other algorithms. We duplicate
the ancestor nodes of each CPN, which may be CPNs or
IBNs, in descending order of message arrival times. Thus,
the more important parent nodes are always duplicated
first. In addition, we apply the duplication technique
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recursively upward from the parent nodes so that the CPN
being considered can potentially start at the earliest
possible time. The following rule formalizes the
duplication technique.
Duplication Rule (DR):
Suppose that ni is being considered to schedule on processor J.
The duplication node list (DNL) for ni on processor J as well as
the EST(ni, J) are determined in the following steps.

1) Determine EST(ni, J).
2) If EST(ni, J) = ∞ or VIP(ni, J) does not exist or VIP(ni, J) is

scheduled on J, then the start time of ni cannot be reduced
by duplication. The duplication process stops at this step.

3) Otherwise, insert VIP(ni, J) into DNL(ni, J) provided
EST(ni, J) does not increase. If this VIP is not inserted, the
duplication process terminates; otherwise, replace ni by
VIP(ni, J) and repeat the process from step 1).

3.2  The CPFD Algorithm
The proposed algorithm, which applies duplication to

schedule CPNs efficiently, is calledCritical Path Fast
Duplication (CPFD) algorithm. The algorithm uses two
procedures:Attempt_Duplication, and Trace_Ancestor.
They are described below.
Attempt_Duplication(ni):
(1) min_EST← ∞, min_PE← NULL, min_DNL← NULL
(2) Push on PE_Stack: (i) an unused processor; (ii) all

processors containing the parent nodes ofni.
(3) while PE_Stack is not emptydo
(4) J ← top ofPE_Stack
(5) Apply the DR toni
(6) if EST(ni, J) < min_EST then
(7) min_EST← EST(ni, J), min_PE← J, min_DNL ←

DNL(ni, J)
(8) end if
(9) end while
(10) Duplicate nodes onmin_PE according tomin_DNL
(11) Schedule ni to min_PE with ST(ni, min_PE)← min_EST

Attempt_Duplicationworks by constructing a stack of
candidate processors to find the one which gives the lower
bound start time of ni. The complexity of
Attempt_Duplicationis determined as follows. Step 5 is
the dominant step. This step takesO(en)time. There are at
mostO(p) execution of this step.Thus, the complexity of
Attempt_Duplication is O(pen).
Trace_Ancestor(ni):
(1) while  there exists unscheduled parent node ofni do
(2) np ← an unscheduled parent node ofni
(3) Trace_Ancestor(np)
(4) end while
(5) Attempt_Duplication(ni)

Trace_Ancestorworks by recursively scheduling all
the parent nodes (and other ancestor nodes as well) before
schedulingni itself. The complexity ofTrace_Ancestoris
O(mpen)if there areO(m) unscheduled ancestor nodes.
Based onAttempt_Duplicationand Trace_Ancestor, the
CPFD algorithm is formalized below.
The CPFD Algorithm:
(1) Determine a CP. Break ties by selecting the one with a

larger sum of computation costs.
(2) for  each CPNni (start from the entry node)do
(3) Trace_Ancestor(ni)
(4) end for
(5) Perform OBN Binding
(6) for each OBNnj (start from the one with the highest

priority) do
(7) Trace_Ancestor(nj)
(8) end for

The complexity of the CPFD algorithm isO(pen2) as

there is O(n) execution of Trace_Ancestor. Thus, the
CPFD algorithm is practical even for large task graphs.
3.3  An Application Example

In this section, we illustrate the effectiveness of the
CPFD algorithm by showing its schedule for a randomly
generated task graph. For comparison, the schedules
produced by the DSH and BTDH algorithms are also
presented.

Both DSH and BTDH algorithms need a
supplementary scheduling algorithm to determine the
priorities of nodes. It is shown in [1] that the Highest Level
First with Estimated Time (HLFET) scheduling algorithm
[8] gives better results. The HLFET algorithm, which is an
extension of Hu’s classic work [3], defines the priority of
a node as the largest sum of computation costs among all
the directed path from the node to an exit node in the task
graph. In what follows, we call the two algorithms as DSH/
HLFET and BTDH/HLFET, respectively, to indicate that
they employ the HLFET algorithm to determine priorities
of nodes.

A schedule for the random task graph (Figure 1 (a))
without duplication is shown in Figure 1(b). The schedule
length is 301 time units. This schedule, which is generated
by hand, is the best possible schedule without duplication.
The lower bound is 246 time units, which is equal to the
sum of computation costs along the CP, cannot be
achieved in this case. Nodesn6, n7, n8, n9 already start at the
earliest possible time and they cannot start earlier because
of the unavoidable communication delays.

The schedule generated by DSH/HLFET is shown in
Figure 2(a). The communication edges are not shown for
clarity. The schedule length is 275 time units. The problem
with the DSH algorithm is revealed by the scheduling of
n10. If no parent node is duplicated to PE 3, the start time
of n10 will be at time 248. Thus,n3 is duplicated to
processor PE 3 and the start time ofn10 reduces to 220.
However,n2 is not duplicated to PE 3 because this would
increase the start time ofn3 and hence that ofn10 to time
169 and time 242 respectively. Thus, according to the DSH
algorithm,n2 is not duplicated and the duplication process
terminates at that point. On the other hand, ifn1 is also
duplicated to PE 3, the start time ofn2, n3 andn10 will be
reduced dramatically. This can be seen from the schedule
generated by BTDH/HLFET shown in Figure 2(b).
However, the schedule produced by BTDH/HLFET is still
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Figure 1: (a) A randomly generated task graph; (b) The best
possible schedule without duplication (schedule length = 301).
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not the best. Consider the nodes assigned to PE 1.
Although the parent nodesn1 andn12 are duplicated to PE
1, the start time ofn6 is still not improved because it has to
wait for the data fromn3. The noden3 is not duplicated
since the time slot on PE 1 is not large enough to
accommodate it. The schedule produced by CPFD is
shown in Figure 2(c). The schedule length is 246 time units
which is the best possible. All nodes are able to start at the
earliest possible times due to proper duplication. The
problems with DSH and BTDH do not occur with the
CPFD algorithm.
4  Performance and Comparison

To test and compare the performance of the proposed
scheduling algorithm, we generated a suite of task graphs.
Our objective is to compare the schedule lengths produced
by all three algorithms for various graph structures,
different values of CCR and the task graph size in terms of
the number of nodes.
4.1  Workload

We generated task graphs with seven different types of
structures: completely random graphs, in-tree graphs, out-
tree graphs, fork-join graphs and task graphs correspond to
three parallel algorithms — Gaussian elimination, LU-
decomposition and Laplace Equation Solver. Within each
type of graph structure, we chose seven values of CCR
which are 0.1, 0.5, 1.0, 1.5, 2.0, 5.0 and 10.0. For each of
the seven values of CCR, we generated 10 different graphs
with the number of nodes varying from 10 to 100 with an
increment of 10. This implies that for each value of CCR,
there are 70 graphs, and the total number of graphs is 490.
For each graph, the weights of the nodes and the
communication edges are different and have been chosen

randomly such that the average CCR of the graph
corresponds to one of the seven values of CCR described
above.
4.2  Relative Performance

Table I summarizes the relative performance of the
DSH, BTDH and CPFD algorithms in terms of the
schedule lengths produced for the suite of task graphs.
There are three types of comparisons given in this table.
First, we use DSH as the reference and compare the
performance of BTDH and CPFD relative to it. Next, we
compare the performance of CPFD with BTDH. For each
comparison, there are seven rows in the table, with each
row corresponding to results of running the scheduling
algorithms on 70 different task graphs for that value of
CCR. The first three columns indicate the comparative
performance of the scheduling algorithms in terms of
schedule lengths of these 70 graphs. For example, when
BTDH is compared with DSH when CCR is equal to 0.1,
the first row in the table indicates that BTDH generated a
shorter schedule length on 3 graphs, generated a longer
schedule on 4 graphs while the schedule length on 63
graphs was the same for both algorithms. Similarly, the
next three columns indicate the average percentage
improvement, maximum percentage improvement and
average percentage degradation in the schedule length
produced by BTDH over DSH. These numbers have been
taken across the schedule lengths of 70 graphs for each
value of CCR. An inspection of Table I reveals that BTDH
performs increasingly better than DSH for higher values of
CCR. Also, BTDH yields better value of the average
percentage improvement and maximum percentage
improvements. However, there are occasional cases when
BTDH performs worse than DSH. When CPFD is

(b)

Figure 2: Schedules of the random task graph generated by (a) DSH/
HLFET (schedule length = 275); (b) BTDH/HLFET (schedule length =
258); (c) CPFD (schedule length = 246).
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Number of times it performs better

Number of times it performs worse

The average% improvement in schedule length

The maximum% improvement in schedule length

The worst % degradation in schedule length

BTDH
compared
with C

C
R

0.1

0.5

1.0

1.5

2.0

5.0

10.0

3 4 63 -0.10 0.37 0.76

12 0 58 0.57 2.48 None

16 2 52 1.62 4.19 0.33

15 0 55 2.17 6.89 None

22 1 47 2.79 7.86 1.39

26 0 44 6.19 17.74 None

30 0 40 8.92 19.07 None

27 0 43 1.56 5.48 None

39 0 31 2.66 6.40 None

56 0 14 4.72 8.93 None

54 0 16 6.07 12.83 None

52 0 18 7.35 13.63 None

42 0 28 7.49 17.99 None

45 0 25 10.47 20.54 None

27 0 43 1.66 5.36 None

34 0 36 2.11 4.85 None

43 0 27 3.11 5.87 None

43 0 27 3.92 7.51 None

42 0 28 4.56 8.63 None

28 0 42 1.33 3.82 None

28 0 42 1.91 5.31 None
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Table I: A performance comparison of the three scheduling algorithms.



compared against DSH, it is immediately apparent that the
number of times it performs better is increased not only for
the larger values of CCR but also for smaller values of
CCR. The average improvement in the schedule varies
from 1.56 to 10.47%. The CPFD algorithm also
outperforms BTDH for all values of CCR. The average
percentage improvement in the schedule length varies
from 1.33 to 4.56%. There is no single case out of 490
tests, where CPFD performs worse than DSH or BTDH.
4.3  Absolute Performance

The results providing the relative performance
described above are supplemented by the results showing
the performance of each algorithm with respect to the
lower bound on the schedule length. This bound, which is
the sum of the computation costs of the nodes on the CP,
provides a lower limit on the schedule length. The lower
bound, however, may not be achievable with any
scheduling algorithm and the optimal schedule length may
well exceed this bound. When scheduling the test graphs,
we observed the number of times each algorithm produced
a schedule length equal to the lower bound. The bar charts
shown in Figure 4 indicate the number of times lower

bound was achieved with each algorithm for different
values of CCR. Again, there are 70 test cases for each CCR
value. As expected, lower bound is more likely to be
achieved when the value of CCR is low. One noticeable
point is that DSH rarely reaches the lower bound if the
value of CCR is 1.0 or higher. In contrast, BTDH is still
able to achieve lower bound in 10 out of 70 test cases. The
CPFD algorithm, on the other hand, performs much better
than both DSH and BTDH at lower as well as higher
values of CCR. The CPFD algorithm achieved lower
bounds on all out-tree graphs. Figure 4 shows the average
normalized schedule lengths produced by each algorithm
with the number of nodes in each graph varying from 10 to
100. The normalized schedule length, which is defined as
the actual schedule length divided by the lower bound,
increases a little bit with the graph size. This is because the
proportion of nodes which are not on the critical path
slightly increases as the graph size increases. Thus, the
lower bound, which is determined by the CP, becomes less
likely to reach. The performance of the CPFD algorithms
is consistently superior than the other two algorithms for
different graph sizes. Furthermore, the difference between
the normalized schedule length of CPFD and the other two
algorithms tends to increase for larger graphs.

5  Conclusions
Using task duplication in scheduling can be useful

especially when the CCR of a parallel algorithm on a given
system is high. This is usually the case in distributed
systems such as cluster of workstations. Both DSH and
BTDH algorithms produce good solutions with the latter
outperforming the former when CCR is very high.
However, the basic principle in both the algorithms is
essentially the same, that is, to duplicate a parent task if it
improves start time of a node. The proposed CPFD
algorithm which uses a new technique tries to start every
tasks at the earliest possible time from the beginning of the
scheduling process. The proposed algorithm outperforms
both of these algorithms without performing worse in any
of the 490 test cases. Moreover, it consistently performs
better at low as well as high values of CCR.
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